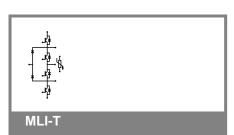


Trench IGBT Modules

SKM 300 MLI 066 T

Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- 3 Level Inverter

Remarks

 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C

Absolute Maximum Ratings $T_{case} = 25^{\circ}C$, unless otherwise specified						
Symbol	Conditions	case	Values	ˈ Units		
IGBT	Ooriditions		Values	Office		
V _{CES}	T _j = 25 °C		600	V		
I _C	T _i = 175 °C	T _c = 25 °C	400	Α		
	,	T _c = 80 °C	300	Α		
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V; VCES < 600 V	T _j = 150 °C	6	μs		
Inverse	Diode					
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$	324	Α		
		T _c = 80 °C	211	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		420	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	2100	Α		
Freewhe	eling Diode					
I_{F}	T _j = 150 °C	T_c = 25 °C	324	Α		
		T_c = 80 °C	211	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		420	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	2100	Α		
Module	·					
$I_{t(RMS)}$			500	Α		
T_{vj}			- 40 + 175	°C		
T _{stg}			- 40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _{case} =		= 25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4.8 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,5	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA
V _{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,85	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,8	3	mΩ
		T _j = 150°C		2,7	3,8	mΩ
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,9	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,7	2,1	V
C _{ies}				18,4		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,14		nF
C _{res}				0,54		nF
Q_G	V _{GE} = -15V+15V			3900		nC
R _{Gint}	T _j = °C			1		Ω
t _{d(on)}				140		ns
t _r	$R_{Gon} = 2.2 \Omega$	V _{CC} = 300V		89		ns
Ė _{on}	di/dt = 3400 A/μs	I _C = 300A		3,5		mJ
t _{d(off)}	$R_{Goff} = 2.2 \Omega$	T _j = 125 °C		433		ns
t _f	di/dt = 3400 A/µs	V _{GE} = 15V/+15V		116		ns
E_{off}				10,1		mJ
R _{th(j-c)}	per IGBT			0,15		K/W

SEMITRANS[®] 5

Trench IGBT Modules

SKM 300 MLI 066 T

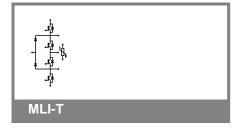
Target Data

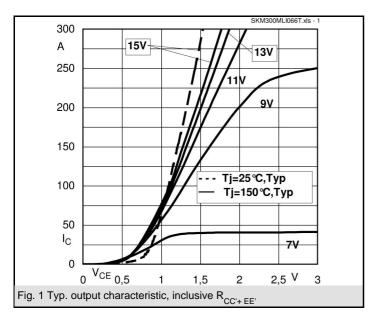
Features

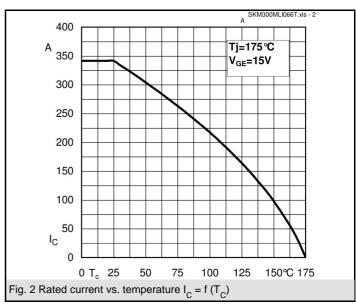
- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

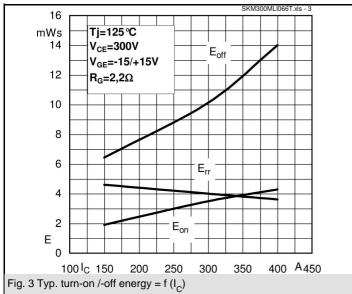
Typical Applications*

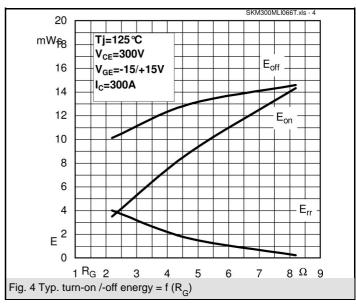
- UPS
- 3 Level Inverter

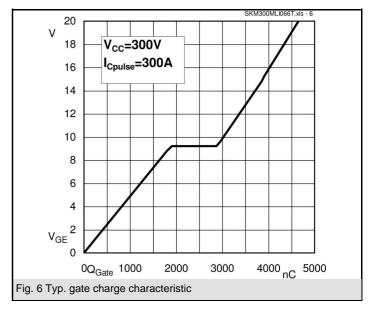

Remarks

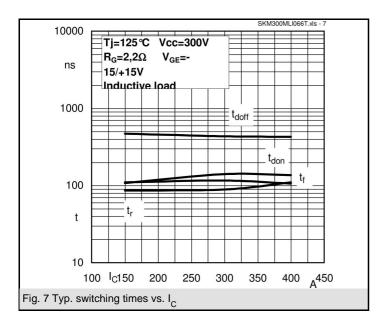

• Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C

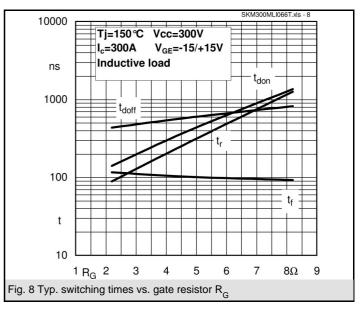

Characte	ristics					
Symbol	Conditions	I	min.	typ.	max.	Units
Inverse D						•
$V_F = V_{EC}$	I_{Fnom} = 245 A; V_{GE} = 0 V			1,35	1,6	V
		$T_j = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1,35	1,6	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,9	1	V
r _F		T _j = 25 °C		1,42	2	mΩ
		T _j = 125 °C		1,8	2,4	$m\Omega$
I _{RRM} Q _{rr}	I _F = 245 A	T _j = 125 °C				A µC
E _{rr}	$V_{GE} = -8 \text{ V}; V_{CC} = 300 \text{ V}$					mJ
R _{th(j-c)D}	per diode			0,28		K/W
Free-whe	eling diode (Neutral (Clamp Diode)				•
$V_F = V_{EC}$	I_{Fnom} = 245 A; V_{GE} = 0 V			1,35	1,6	V
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,35	1,6	V
V_{F0}		T _j = 25 °C		1	1,1	V
		T _j = 125 °C		0,9	1	V
r _F		T _j = 25 °C		1,42	2	V
		T _j = 125 °C		1,8	2,4	V
I _{RRM}	I _F = 300 A	T _j = 125 °C		194		Α
Q_{rr}	di/dt = 3400 A/μs			13		μC
E _{rr}	$V_{GE} = 0 \text{ V}; V_{CC} = 300 \text{ V}$			4		mJ
$R_{th(j-c)FD}$	per diode			0,28		K/W
R _{th(c-s)}	per module				0,038	K/W
M_s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					310	g
Tempera	ture sensor					
R ₁₀₀	T_s =100°C (R_{25} =5k Ω)			493±5%		Ω
						K

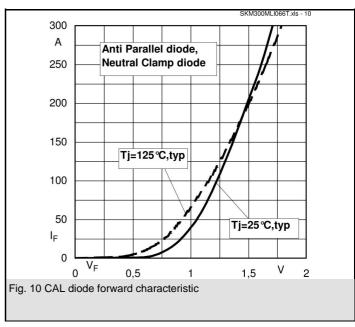

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

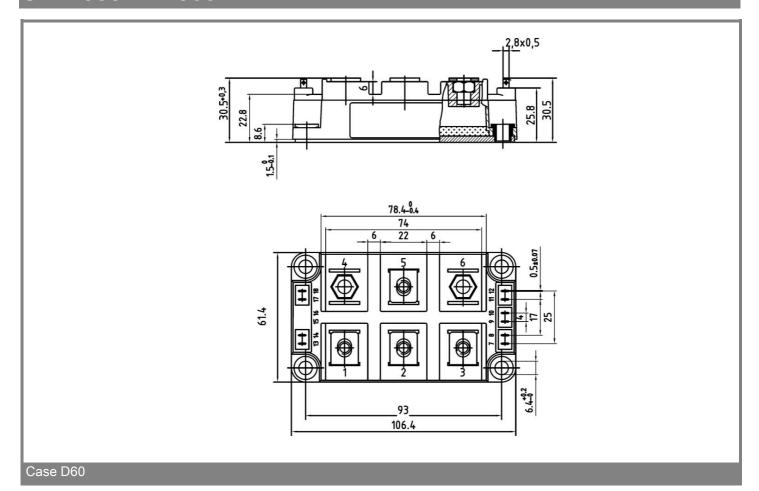

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

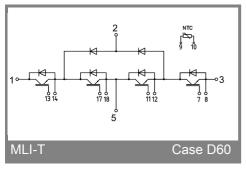












4 27-07-2010 DIL © by SEMIKRON

5 27-07-2010 DIL © by SEMIKRON